
3. daisy:320 (Fithen, William L.)

Treat the Entire Inherited Process Context as Unvalidated
Input
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03

Inherited process context that is not validated like other inputs can introduce vulnerability.

Description

It is necessarily the case that when a program starts execution, it inherits an execution context that is
potentially malicious. The only parts of the execution context that can be malicious are those aspects that
are both dynamic and subject to influence by an adversary. That is, anything that an invoking adversary
could change offers the potential of being a trap for the program. Static aspects of the execution
environment are accommodated in the normal engineering approaches.

The only approach to this situation is to design a protocol to establish trust in the context. This includes

• correcting or discarding aspects of the context

• validating those aspects of the context that cannot be corrected

Note that the adversary can change some aspects of the execution context while the program is running.
That is not covered here. Those are generally considered time and state problems.

Dynamic Assembly
Many operating systems and programming languages support assembly of executable programs
immediately before or during execution. The pieces from which the ultimate executable is composed
must be acquired from many places. The most common are

• files from local filesystems

• files from remote (network) filesystems

• files from web, code, or application servers on the network

The specific locations for these component files are generally configured into the operating systems or
runtime environments of the programming languages. In some cases, these locations are incorrectly
configured or can be fooled into loading pieces from vulnerable locations—locations where adversaries
can pre-position maliticous code.

Environments where this has been known to occur include the following:

• Virtually all modern UNIX operating systems have support for shared object libraries. An adversary
may be able to fool the system into loading a shared library before or instead of those the engineer of
the program expects.

• All modern versions of Microsoft Windows operating systems have support for dynamically loaded

Treat the Entire Inherited Process Context as Unvalidated Input 1
ID: 341 | Version: 4 | Datum: 04.04.06 14:33:59

daisy:320

libraries. As in the case of UNIX, adversaries may be able to load their DLLs before or instead of
those expected.

• Many modular scripting languages, including

• PERL,

• Ruby, and

• Python.

• Java and .NET include dynamic assembly is an integral part of the platforms themselves. That is,
while most of the execution environments described above use dynamic assembly for efficiency,
Java and .NET use it functionally. Consequently, it cannot be avoided.

References

[CA-1995-14] cert.org. CERT® Advisory CA-1995-14 Telnetd Environment Vulnerability.
http://www.cert.org/advisories/CA-1995-14.html (1997).

[Gosling 05] Gosling, James; Joy, Bill; Steele, Guy; & Bracha, Gilad. The Java Language
Specification, Third Edition. Boston, MA: Addison-Wesley Professional,
2005. http://java.sun.com/docs/books/jls/.

[Grubb 02] Grubb, Steven. A Survey of Process Environments.
http://www.web-insights.net/env_audit/environments.pdf (2002).

[McClure 99] McClure, Stuart; Scambray, Joel; & Kurtz, George. Hacking Exposed:
Network Security Secrets & Solutions, 316-317. Computing Mcgraw-Hill,
1999.

[Thompson 05] Thompson, Herbert & Chase, Scott. The Software Vulnerability Guide,
211-222. Charles River Media, 2005.

[VU#602625] cert.org. Vulnerability Note VU#602625: KTH Kerberos environment
variables krb4proxy and KRBCONFDIR may be used insecurely.
http://www.kb.cert.org/vuls/id/602625 (2001).

[VU#943633] cert.org. Vulnerability Note VU#943633: FreeBSD can be compromised
locally via signal handlers. http://www.kb.cert.org/vuls/id/943633 (2002).

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the

Treat the Entire Inherited Process Context as Unvalidated Input 2
ID: 341 | Version: 4 | Datum: 04.04.06 14:33:59

http://www.cert.org/advisories/CA-1995-14.html
http://java.sun.com/docs/books/jls/
http://www.kb.cert.org/vuls/id/602625
http://www.kb.cert.org/vuls/id/943633
http://www.sei.cmu.edu/about/legal-permissions.html

1. http://www.sei.cmu.edu/about/legal-permissions.html

SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Felder

Name Wert

Copyright Holder SEI

Felder

Name Wert

is-content-area-overview false

Content Areas Knowledge/Guidelines

SDLC Relevance Implementation

Workflow State Publishable

Treat the Entire Inherited Process Context as Unvalidated Input 3
ID: 341 | Version: 4 | Datum: 04.04.06 14:33:59

